Posts

In a move that has set the cybersecurity world on alert, Palo Alto Networks has sounded the alarm on a significant security flaw in their Expedition tool, a platform designed to streamline the migration of firewall configurations to their proprietary PAN-OS. This vulnerability, codified as CVE-2024-5910, underscores the critical importance of authentication protocols in safeguarding digital boundaries. The flaw itself—a missing authentication mechanism—permits attackers with mere network access the alarming ability to reset administrator credentials, effectively opening the gate to unauthorized access and potentially compromising configuration secrets, credentials, and sensitive data that lie at the heart of an organization’s digital defenses.

The gravity of this flaw is underscored by the immediate attention of the U.S. Cybersecurity and Infrastructure Security Agency (CISA), which has not only added the vulnerability to its Known Exploited Vulnerabilities Catalog but also issued a direct mandate: all federal agencies must address this vulnerability by November 28, 2024. The urgency of this deadline signifies more than just bureaucratic efficiency; it speaks to the alarming nature of a vulnerability that CISA reports is being exploited in the wild, thus shifting this issue from a theoretical risk to an active threat.

Palo Alto Networks has responded with characteristic clarity, outlining a series of robust security measures to mitigate this vulnerability. They emphasize restricting the PAN-OS management interface to trusted internal IP addresses, advising against exposure to the open internet. In addition, they recommend isolating the management interface within a dedicated VLAN, further securing communications through SSH and HTTPS. These measures, while straightforward, demand a high level of attention to detail in implementation—an effort that could very well mean the difference between a fortified system and a compromised one.

Meanwhile, in a strategic pivot, Palo Alto Networks has announced that the core functionalities of Expedition will soon be integrated into new offerings, marking the end of Expedition support as of January 2025. The shift signals a broader evolution within the company’s ecosystem, perhaps heralding more advanced, integrated solutions that can preemptively address vulnerabilities before they surface.

The directive to apply patches and adhere to the recommended security configurations is not just sound advice; it is, as security expert Wesinger noted, a necessary defensive measure in a rapidly shifting landscape where the stability of one’s systems rests on the relentless vigilance of their custodians. The events unfolding around CVE-2024-5910 are a reminder that in cybersecurity, as in any theater of conflict, complacency remains the greatest vulnerability.

By Skeeter Wesinger

November 14, 2024

 

https://www.linkedin.com/pulse/new-front-cybersecurity-exposed-skeeter-wesinger-rjypf

In 2024 we have seen a series of unsettling developments in the cybersecurity landscape, where vulnerabilities once hidden deep within critical systems have been actively exploited. Chief among these exploits is the ominously named 0-day, signifying a newly discovered vulnerability that developers have had no time to respond to before attacks commence. This term has come to define a generation of cyber threats that bypass traditional defenses with startling ease as various hardware platforms fall victim to these relentless incursions.

Samsung’s Exynos processors were among the first to face the assault. A 0-day exploit (CVE-2024-44068) targeted their firmware, specifically in models like the Exynos 9820 and W920, where a subtle “use-after-free” bug allowed attackers to elevate their privileges. Through this flaw, malicious actors could execute arbitrary code on Android devices, putting countless users at risk. Although Samsung rushed to patch the issue, the vulnerability highlighted the precarious state of modern mobile security.

Google’s Pixel devices soon followed in a similar fate. Another 0-day exploit emerged, this time striking at the core of the Pixel’s operating system, enabling attackers to take control of the device by escalating privileges without the user’s knowledge. Google’s response was swift, issuing a security update in June 2024, but the existence of such a flaw in one of the world’s most secure phones was a chilling reminder of the fallibility of even the most advanced technology.

The specter of 0-day did not limit itself to mobile devices. Microsoft products, including Windows, SharePoint, and Edge, fell prey to multiple zero-day vulnerabilities, with CVE-2024-38094 leading the charge in executing remote code across systems. This onslaught was followed by revelations of security holes within critical network infrastructures, most notably Palo Alto Networks’ PAN-OS and Cisco’s NX-OS devices. The 0-day exploit (CVE-2024-3400) affecting PAN-OS leveraged a command injection flaw, while Cisco’s suffered from another 0-day (CVE-2024-20399), granting administrative attackers the ability to run commands with root privileges, a breach that left network administrators scrambling for solutions.

Fortinet’s FortiOS was next in line. Another 0-day (CVE-2024-21762), identified as an out-of-bounds write vulnerability, allowed remote unauthenticated attackers to exploit SSL VPN components. Over 150,000 devices worldwide, spanning the U.S., Japan, India, and Brazil, were exposed to the risk of total system compromise. Fortinet’s patches arrived in time, but the sheer scale of potential exposure showcased the increasing reliance on patchwork solutions to address deep-seated flaws in critical infrastructure.

The march of 0-day continued, making its presence felt in the world of open-source firewalls, particularly pfSense. The situation was dire here: multiple flaws, including CVE-2023-42326, exposed the firewall to remote code execution attacks. While Netgate worked to release patches for its pfSense Plus and CE software, the vulnerability was a stark reminder of the dangers inherent in open-source systems, where security is often as much a communal responsibility as the vendor’s.

As the dust settles on these developments, one thing is abundantly clear: 0-day exploits have evolved from obscure technical concerns into the primary battlefield of the digital age. The vulnerabilities laid bare in 2024 serve as both a warning and a challenge, reminding us that in the world of cybersecurity, no fortress is unbreakable, and no system is ever truly safe.

Story By

Skeeter Wesinger

October 23, 2024

https://www.linkedin.com/pulse/federal-authorities-believe-group-cybercriminals-backed-wesinger-hot2e/?trackingId=Zoffku5WQRS%2FEPir13p9eQ%3D%3D

 

The Ultra Ethernet Consortium (UEC) has delayed release of the version 1.0 of specification from Q3 2024 to Q1 2025, but it looks like AMD is ready to announce an actual network interface card for AI datacenters that is ready to be deployed into Ultra Ethernet datacenters. The new unit is the AMD Pensando Pollara 400, which promises an up to six times performance boost for AI workloads. In edge deployments, running a firewall directly on the NIC allows for more efficient security enforcement, where system resources may be limited. Using the NIC for firewall tasks frees up CPU cores, allowing your system to scale more efficiently without degrading performance as traffic volumes increase.

The AMD Pensando Pollara 400 is a 400 GbE Ultra Ethernet card based on a processor designed by the company’s Pensando unit. The network processor features a processor with a programmable hardware pipeline, programmable RDMA transport, programmable congestion control, and communication library acceleration. The NIC will sample in the fourth quarter and will be commercially available in the first half of 2025, just after the Ultra Ethernet Consortium formally publishes the UEC 1.0 specification. Businesses can implement NIC-based firewalling to manage traffic across VLANs or isolated network segments, enhancing network security without the need for dedicated firewall hardware.

Pollara 400

The AMD Pensando Pollara 400 AI NIC is designed to optimize AI and HPC networking through several advanced capabilities. One of its key features is intelligent multipathing, which dynamically distributes data packets across optimal routes, preventing network congestion and improving overall efficiency. The NIC also includes path-aware congestion control, which reroutes data away from temporarily congested paths to ensure continuous high-speed data flow.

The AMD Pensando Pollara 400 AI NIC supports advanced programmability and can be integrated with a development kit that is available for free. The AMD Pensando Software-in-Silicon Development Kit (SSDK) provides a robust environment for building and deploying applications directly on the NIC, allowing you to offload networking, firewall, encryption, and even AI inference tasks from the CPU.

The SSDK supports programming in P416 for fast path operations, as well as C and C++ for more traditional processing tasks. It provides full support for network and security functions like firewalling, IPsec, and NAT, allowing these to be handled directly by the NIC rather than the host CPU. Developers can use the provided reference pipelines and code samples to quickly get started with firewall implementations or other network services.

The SDK and related tools are open and accessible via GitHub and AMD’s official developer portals, enabling developers to experiment with and integrate Pensando’s NICs into their systems without licensing fees. Some repositories and tools are available directly on GitHub under AMD Pensando’s.

The delay in the release of the Ultra Ethernet Consortium’s (UEC) version 1.0 specification, initially expected in the third quarter of 2024 and now pushed to the first quarter of 2025, does little to shake the confidence of those observing AMD’s bold march forward. While others may have stumbled, AMD stands ready to unveil a fully realized network interface card (NIC) for AI datacenters—the AMD Pensando Pollara 400—an innovation poised to redefine the landscape of Ultra Ethernet data centers. This NIC, a formidable 400 GbE unit, embodies the very pinnacle of technological advancement. Designed by AMD’s Pensando unit, it promises no less than a sixfold increase in AI workload performance.

The Pollara 400’s impact goes beyond sheer processing power. At the edge, where resources are scarce and security paramount, the NIC performs firewall tasks directly, relieving the central processing unit from such burdensome duties. Herein lies its genius: by offloading these critical tasks, system scalability is enhanced, enabling traffic to flow unhindered and system performance to remain steady, even under mounting demands.

As we await the final specifications from the UEC, AMD has announced that the Pollara 400 will be available for sampling by the fourth quarter of 2024, with commercial deployment anticipated in early 2025. It is no mere stopgap solution—it is a harbinger of a new era in AI networking, built upon a programmable hardware pipeline capable of handling RDMA transport, congestion control, and advanced communication library acceleration.

Furthermore, the NIC’s intelligent multipathing is a feat of engineering brilliance. With its path-aware congestion control, this marvel dynamically directs data around congested network routes, ensuring that AI workloads are never hampered by the bottlenecks that so often plague high-performance computing.

The Pollara 400 is more than just hardware; it is an ecosystem supported by the AMD Pensando Software-in-Silicon Development Kit (SSDK), a free and versatile tool that allows developers to fully leverage its capabilities. Whether programming in P416 for high-speed operations or using C and C++ for more traditional tasks, developers can easily deploy firewalls, IPsec, and NAT directly onto the NIC itself, bypassing the need for traditional CPU involvement.

The SSDK provides not only the means but also the guidance to streamline development. From pre-built reference pipelines to comprehensive code samples, it invites developers to embrace the future of network security and AI processing, all while maintaining openness and accessibility via AMD’s repositories on GitHub. This is no longer just the work of a single company—it is a shared endeavor, opening new frontiers for those bold enough to explore them.

Thus, as AMD prepares to thrust the Pollara 400 into the spotlight, one thing becomes abundantly clear: the future of AI networking will not be forged in the server rooms of yesterday but at the cutting edge of what is possible, where firewalls, encryption, and AI tasks are handled in stride by a NIC that rewrites the rules.

Story By

Skeeter Wesinger

October 11, 2024

 

https://www.linkedin.com/pulse/amd-pensando-pollara-400-skeeter-wesinger-yulwe

In the ever-evolving landscape of cybersecurity, where every vulnerability is a potential chink in the armor, penetration testers, often known as “Tiger Teams,” are equipped with an array of sophisticated tools to expose the frailties of modern networks and systems. These tools, while small in stature, are formidable in function.


Take, for instance, the Plunder Bug. It is no larger than a thumb drive but operates with the efficiency of a seasoned spy. Its purpose is passive yet critical: network sniffing. When embedded between a device and a network connection, it quietly captures traffic without interfering, all while remaining undetected. Plugged into a mobile device via USB, it provides real-time insights into network vulnerabilities, offering testers a mobile command center from which they can dissect the data flow.
Then there’s the Shark Jack, a sleek, portable penetration tool that embodies the speed and stealth of its namesake. This tool connects swiftly to a network, scanning it for weaknesses with a precision akin to a predator stalking its prey. Whether it’s identifying vulnerable devices or launching automated attacks, such as exploiting open ports, the Shark Jack serves as an efficient reconnaissance agent, laying bare the weak points of a wired network with ease.
The Bash Bunny is another versatile tool in the Tiger Team’s arsenal, designed to mimic trusted devices. Disguised as a simple USB device, it is a shape-shifter in the realm of penetration testing. Plugged into a target system, it becomes whatever the system desires—be it a keyboard or a mass storage device. But underneath this guise, it executes pre-written scripts, harvesting credentials, exfiltrating data, and injecting malicious payloads with surgical precision. It performs its tasks swiftly, leaving no trace save the evidence it seeks to uncover.
And who could overlook the infamous USB Rubber Ducky that appears to be innocuous enough, resembling the average USB drive one might carry in a pocket with a rubber ducky on the side. However, it is as dangerous as a loaded 44 magnum in the right hands. When connected to an unlocked system, it transforms into a virtual keyboard, inputting keystrokes at a speed no human could rival. A simple script loaded onto the Ducky can compromise a system in seconds, launching commands, creating backdoors, or altering configurations—all with the rapidity of a few automated keystrokes.
However, these tools are not limited to devices inserted by hand. There are Implants for Stealthy Access hardware planted within target environments for long-term, covert observation. Like an embedded spy within a fortified city, these implants lurk unnoticed in routers or servers, conducting surveillance, launching tests, and communicating remotely with their controllers. In the right hands, these hidden devices provide persistent access, gathering intelligence and launching attacks with impunity.
The Land Turtle is another clandestine agent designed for covert penetration. Small and unassuming, it plugs into an Ethernet port, immediately granting access to the network. Remotely controlled, it allows testers to move through the system undetected, pivoting to different points and exploiting vulnerabilities in real-time. Its low profile belies its formidable capabilities, which range from reconnaissance to remote control.
The Packet Squirrel performs its tasks in a similarly understated manner, manipulating packets of data with ease. Like its forest-dwelling counterpart, it is quick and nimble, placed between network connections where it sniffs packets, analyzing traffic for weaknesses or manipulating data to launch attacks like the dreaded Man-in-the-Middle (MitM).
Not to be forgotten is the OMG Cable, a wolf in sheep’s clothing if ever there was one. To the untrained eye, it is indistinguishable from an ordinary USB or Lightning cable. Yet inside this innocent facade lies a powerful weapon capable of injecting keystrokes and remotely controlling a target system. Its very design is its greatest strength—appearing harmless until the moment of attack, it can be deployed in environments where traditional tools might be too conspicuous.
Of course, in the world of wireless networks, the WiFi Pineapple reigns supreme. It is the master of deception, impersonating legitimate access points to lure unsuspecting devices into its web. Once connected, the Pineapple enables testers—or attackers—to intercept data, manipulate traffic, and launch MitM attacks. It is a tool that is both feared and respected, and it is able to compromise entire networks from a single-entry point.
And finally, we must acknowledge fufAI, a cutting-edge example of how artificial intelligence is revolutionizing penetration testing. This tool marries AI’s computational might with the time-honored practice of file fuzzing, probing for vulnerabilities with an intelligence and speed beyond that of its human counterparts. It is a tool of the future, yet its mission remains timeless: to uncover and exploit the weaknesses that others miss.
These are just a few of the tools in the Tiger Team’s ever-expanding toolbox. Each one plays its role in the grander strategy of penetration testing, revealing the vulnerabilities that lie hidden beneath the surface, waiting for the unwary to stumble.

By Skeeter Wesinger

September 30, 2024

References:
Jabbour, Kamal, and Jenny Poisson. “Cyber Risk Assessment in Distributed Information Systems.” The Cyber Defense Review 1, no. 1 (2016): 91–112.
http://www.jstor.org/stable/26267301.

The latest in a long line of cyber offensives against the United States, codenamed “Salt Typhoon,” once again lays bare the persistent vulnerability of American infrastructure to foreign adversaries, this time originating from China. These incursions are not isolated events but part of a calculated and multi-pronged campaign by advanced persistent threat (APT) groups whose very names, such as Volt Typhoon, reverberate with a chilling consistency. Each operation, carefully designed to probe the fault lines of U.S. cybersecurity, highlights the expanding ambitions of these foreign actors.


In the Salt Typhoon incident, the specter of compromised systems looms large. The focus falls on internet service providers (ISPs)—the backbone of American digital life—whose very arteries were reportedly infiltrated. Experts investigating the breach raise concerns that core infrastructure, specifically Cisco Systems routers, might have been involved. Though Cisco has vigorously denied that its equipment has succumbed to these attacks, the strategic intent of such operations is unmistakable. The threat of an enemy having unfettered access to sensitive networks, able to intercept data, disrupt services, and perhaps even surveil at will, constitutes nothing less than a significant peril to national security.

Yet, as is often the case in the field of cyber warfare, the public remains woefully unaware of the depth and frequency of these intrusions. The U.S., it seems, is forever on the defensive, scrambling to patch vulnerabilities while its adversaries, undeterred, press on. Beijing’s vast cyber apparatus, ever stealthy and insidious, demonstrates an ability to penetrate America’s most vital systems without firing a single shot. The implications, like so many moments in history, may only become clear after the damage has been done.

By Skeeter Wesinger

September 26, 2024